ICC訊 記者4日從中國科學技術(shù)大學獲悉,該校郭光燦院士團隊郭國平教授、李海歐教授等人與合作者攜手,在硅基鍺空穴量子點中實現(xiàn)了自旋軌道耦合強度的高效調(diào)控,這對該體系實現(xiàn)自旋軌道開關(guān)以及提升自旋量子比特的品質(zhì)具有重要的指導(dǎo)意義。研究成果日前在線發(fā)表在國際應(yīng)用物理知名期刊《應(yīng)用物理評論》上。
硅基自旋量子比特具有較長的量子退相干時間以及高操控保真度,是未來實現(xiàn)量子計算機的有力候選者。高操控保真度要求比特在擁有較長的量子退相干時間的同時具備足夠快的操控速率。由于傳統(tǒng)的比特操控方式電子自旋共振受到加熱效應(yīng)的限制,其翻轉(zhuǎn)速率較慢。當體系中存在較強的自旋軌道耦合時,理論和實驗研究都表明可以利用電偶極自旋共振實現(xiàn)自旋比特的翻轉(zhuǎn),其翻轉(zhuǎn)速率與自旋軌道耦合強度成正比,可以大大提高比特操控速率。
研究人員通過理論建模和數(shù)值分析,得到了體系內(nèi)的自旋軌道強度。通過調(diào)節(jié)柵極電壓并改變雙量子點間的耦合強度,實現(xiàn)了體系中自旋軌道耦合強度的大范圍調(diào)控。同時,研究表明,通過調(diào)節(jié)體系內(nèi)的自旋耦合強度并改變納米線的生長方向,既可以在動量空間找到一個自旋軌道耦合完全關(guān)閉的位置,也可以利用自旋軌道開關(guān)找到在實現(xiàn)比特超快操控速率的同時,使得比特保持較長的量子退相干時間的最佳操控點。
這一新發(fā)現(xiàn)為實現(xiàn)比特高保真度操控以及提升自旋量子比特的品質(zhì)提供了重要的研究基礎(chǔ)。