與此同時(shí),隨著對(duì)無線通信容量需求的增加,微波技術(shù)也在迅速發(fā)展。微波通信能夠在任意方向上發(fā)射、易于構(gòu)建和重構(gòu),實(shí)現(xiàn)與移動(dòng)設(shè)備的互聯(lián);蜂窩式系統(tǒng)的出現(xiàn),使微波通信具備高的頻譜利用率。但目前微波頻段的有限帶寬成為嚴(yán)重問題,人們開始考慮30~70 GHz新頻段的利用。60 GHz光載無線(ROF)系統(tǒng)由于接入速率高和不需要另外申請(qǐng)牌照等優(yōu)點(diǎn)正成為寬帶接入的熱門技術(shù)。60 GHz信號(hào)在大氣中的傳輸損耗高達(dá)14 dB/km,意味著在蜂窩移動(dòng)通信中信道頻率可更加頻繁地重復(fù)使用。但傳統(tǒng)的微波傳輸介質(zhì)在長距離傳輸時(shí)具有很大損耗,而光纖系統(tǒng)具有低損耗、高帶寬特性,對(duì)于微波傳輸和處理充滿吸引力。
光纖技術(shù)與微波技術(shù)相互融合成為一個(gè)重要新方向。從理論上來講,微波技術(shù)和光纖技術(shù)的理論基礎(chǔ)都是電磁波波動(dòng)理論。在光電器件中,當(dāng)波長足夠小時(shí)要考慮波動(dòng)效應(yīng),采用電磁波理論來設(shè)計(jì)和研究光電器件,如波導(dǎo)型或行波型器件。理論基礎(chǔ)的統(tǒng)一,使得微波器件和光電子器件可使用相同材料和技術(shù)在同一芯片上集成,這極大促進(jìn)了兩個(gè)學(xué)科的結(jié)合,促進(jìn)了一門新的交叉學(xué)科——
微波光子學(xué)的誕生。
微波光子學(xué)概念最早于1993年被提出[1]。其研究內(nèi)容涉及了與微波技術(shù)和光纖技術(shù)相關(guān)的各個(gè)領(lǐng)域[2]。主要集中在兩方面:一是解決傳統(tǒng)的光纖通信技術(shù)向微波頻段發(fā)展中的問題,包括激光器、光調(diào)制器、放大器、探測(cè)器和光纖傳輸鏈路的研究;二是利用光電子器件解決微波信號(hào)的產(chǎn)生和控制問題,主要有光生微波源、微波光子濾波器、光域微波放大器、光致微波電信號(hào)的合成和控制等。
2
微波光子學(xué)中的關(guān)鍵技術(shù)
2.1 利用光學(xué)方法產(chǎn)生微波信號(hào)
微波通信向30~70 GHz高頻率的發(fā)展對(duì)傳統(tǒng)微波器件是很大的挑戰(zhàn),此時(shí)利用光學(xué)技術(shù)產(chǎn)生微波信號(hào)展現(xiàn)出很大吸引力。利用光學(xué)技術(shù)產(chǎn)生微波的方法有多種,最簡單的原理是光外差法。設(shè)兩個(gè)光波的頻率、相位和功率分別為?棕 1、?棕 2,?準(zhǔn) 1、?準(zhǔn) 2和P 1、P2。當(dāng)兩束頻率相近,偏振態(tài)相同的光波同時(shí)入射到高頻光探測(cè)器上進(jìn)行拍頻時(shí),可以得到的輸出電流為:
其中R為探測(cè)器的光電轉(zhuǎn)換效率。不難看出,通過拍頻可產(chǎn)生頻率為|?棕 1-?棕 2|的微波信號(hào),且產(chǎn)生信號(hào)的頻率和相位不僅由兩束光的頻率差決定,也與相位差有關(guān)。為保證微波信號(hào)相位噪聲低和穩(wěn)定性,要求兩束光有很高的相干性。為此近年來報(bào)道了許多用以消除激光器產(chǎn)生相位噪聲的新方法。主要有光注入鎖定法[3]、光學(xué)鎖相環(huán)法[4]。但是光注入鎖相法的鎖定范圍很小,典型值為幾百兆赫茲。光學(xué)鎖相環(huán)方法要求從激光器要跟得上主激光器的相位變化,這需要很小的環(huán)路延遲,兩種方法還都需要外加穩(wěn)定的微波信號(hào)源,這增加了成本,不利于實(shí)用化和產(chǎn)品化。
利用集成技術(shù),可將兩個(gè)激光器做在一起。這樣兩束光產(chǎn)生于同一增益介質(zhì)中,相干性好,可避免采用鎖定技術(shù)。1995年,英國電信研究院的David Wake利用多縱模DFB激光器中的兩個(gè)縱模進(jìn)行拍頻,獲得了42 GHz信號(hào)的輸出。
近來利用雙波長光纖激光器的技術(shù)正在發(fā)展。光纖激光器結(jié)構(gòu)輕巧,成本低。一般的光纖激光器中增益介質(zhì)多采用摻鉺光纖,具有均勻加寬特性。人們采用了各種方法抑制均勻加寬導(dǎo)致的模式競(jìng)爭(zhēng)實(shí)現(xiàn)了雙波長光纖激光器,并產(chǎn)生出3~60 GHz不等的微波信號(hào)。如利用低溫抑制均勻加寬[5],分布色散腔,偏振燒孔,空間燒孔,部分分離結(jié)構(gòu)雙波長DFB光纖激光器[6]等。
另一種光生微波方法則利用光外調(diào)制技術(shù)[7],如圖1所示。外調(diào)制器為強(qiáng)度或相位調(diào)制器。如為線性調(diào)制,可產(chǎn)生2倍于調(diào)制頻率的差頻信號(hào)。如采用深調(diào)制技術(shù),可產(chǎn)生4倍調(diào)制頻率的微波信號(hào)。利用光外調(diào)制方法的優(yōu)點(diǎn)是通過改變微波調(diào)制信號(hào)的頻率能夠?qū)崿F(xiàn)頻率的可調(diào)諧。與前一種方法相比,這種方法產(chǎn)生的微波信號(hào)的穩(wěn)定性和相位噪聲取決于微波調(diào)制信號(hào)和調(diào)制器,對(duì)器件要求相對(duì)較低。2005年,加拿大姚建平研究小組提出利用大微波輸入功率驅(qū)動(dòng)一個(gè)鈮酸鋰調(diào)制器再用一個(gè)光纖光柵濾波器濾去光載波分量可獲得兩個(gè)光邊帶,拍頻后獲得了32~50 GHz寬帶可調(diào)的毫米波信號(hào)。中國近年在這方面有了很多報(bào)導(dǎo),結(jié)合利用非線性光子器件的倍頻效應(yīng),可產(chǎn)生頻率在6~60 GHz范圍的微波信號(hào)[8]。
需要注意的是,由于高頻電子器件的進(jìn)步,目前市場(chǎng)上已有60 GHz以下商品微波源模塊出售,光生微波的方法應(yīng)向更高頻率發(fā)展才能體現(xiàn)自己的優(yōu)勢(shì),目前最高頻率的報(bào)導(dǎo)是產(chǎn)生了1 000 GHz、25 ?滋W的拍頻輸出[9],進(jìn)入了太赫茲技術(shù)領(lǐng)域。此外,利用半導(dǎo)體光放大器的增益飽和恢復(fù)特性及光學(xué)偏振調(diào)制、色散效應(yīng)等在光域產(chǎn)生并傳輸超寬帶脈沖信號(hào),仍然是有吸引力的。它能為光載超寬帶(UWBOF)通信提供與光纖系統(tǒng)兼容性良好的UWB脈沖光源[10]。
2.2 光調(diào)制器
用光纖傳輸微波副載波信號(hào)對(duì)光調(diào)制器提出了適應(yīng)調(diào)制的新要求。直接調(diào)制技術(shù)簡單,它通過改變半導(dǎo)體激光器注入電流將微波副載波信號(hào)直接加載到光波上。直接調(diào)制帶寬受到激光器諧振頻率的限制。采用量子結(jié)構(gòu)能夠減小半導(dǎo)體激光器的閾值電流,增加微分增益,提高帶寬。為了進(jìn)一步增加帶寬,需要減小光子壽命和增益壓縮系數(shù)。但是由于增益壓縮系數(shù)的限制,在室溫下直接調(diào)制帶寬很難超過30 GHz。
為能將60 GHz左右或更高的微波信號(hào)調(diào)制到光載波需要采用外調(diào)制技術(shù)。采用行波結(jié)構(gòu)的LiNbO3調(diào)制器,可實(shí)現(xiàn)70 GHz的帶寬[11]。也可采用電吸收調(diào)制器,由于其體積小、驅(qū)動(dòng)電壓低,便于與激光器、光檢測(cè)器等集成為一體,是很有發(fā)展前景的一種光調(diào)制器件。
在調(diào)制技術(shù)方面有一些靈活變通的方法,如頻率上轉(zhuǎn)換法和光外差法。頻率上轉(zhuǎn)換法將較低頻率的微波信號(hào)調(diào)制到光上傳輸,在基站實(shí)現(xiàn)頻率上轉(zhuǎn)化,得到高頻微波信號(hào),這樣雖降低了光調(diào)制器的要求,但增加了基站的復(fù)雜程度;光外差法通過傳輸兩路具有一定頻率差的光信號(hào),光上調(diào)制有基帶信號(hào),在基站將兩個(gè)光波拍頻得到微波信號(hào),但這種方法將受到光纖色散的影響。
2.3 光探測(cè)器
在
微波光子學(xué)中實(shí)用的光探測(cè)器必須具有與常規(guī)光通信系統(tǒng)要求不同的性能:一是高速率;二是高功率輸出,即高的飽和工作點(diǎn);三是在器件上直接轉(zhuǎn)換為微波功率,并從微波天線發(fā)射出去。目前能夠滿足上述要求的器件稱為單一渡越載流子光電二極管(UTC-PD)。在這一器件中只有電子被利用為激活載流子,而空穴被限制在一定的區(qū)域。利用電子的高遷移率,大大提高了器件的響應(yīng)速率。并采用波導(dǎo)結(jié)構(gòu),增加光吸收的作用長度;設(shè)計(jì)最佳的傳輸線阻抗,獲得高響應(yīng)速率和高的飽和功率。據(jù)報(bào)道,已獲得1.55 ?滋m波段1.5 THz信號(hào)的檢測(cè),并有了將UTC-PD與發(fā)射天線或與調(diào)制器做成單片集成器件的報(bào)導(dǎo)。
2.4 微波光子濾波器
微波光子濾波器是光子信號(hào)處理技術(shù)的重要內(nèi)容。在電域內(nèi)處理信號(hào)受頻帶和采樣頻率的限制,處理速度和精度都受到影響,稱為電子“瓶頸”。微波光子濾波器提供了一種解決傳統(tǒng)“瓶頸”問題的新方法。輸入的射頻(RF)信號(hào)通過調(diào)制器調(diào)制到光信號(hào)上,RF信號(hào)的處理在光域進(jìn)行,最后通過光接收器輸出濾波后的微波信號(hào)。采用這種方法的優(yōu)點(diǎn)是:低損耗、高帶寬、不受電磁干擾、重量輕和支持高采樣頻率,使用波分復(fù)用技術(shù)還提供了空間和波長并行處理的可行性。
微波光子濾波器起初應(yīng)用于需要高速信號(hào)處理能力的雷達(dá)系統(tǒng)和航空航天領(lǐng)域。隨著ROF系統(tǒng)研究的深入,微波光子濾波器在通信系統(tǒng)中特別是在毫米波ROF系統(tǒng)中得到應(yīng)用。目前國際上的研究集中在設(shè)計(jì)新型濾波器結(jié)構(gòu)以實(shí)現(xiàn)Q值更高的頻率響應(yīng)、負(fù)抽頭系數(shù)、可調(diào)性、可重構(gòu)和更大的動(dòng)態(tài)范圍等。傳統(tǒng)的方法有兩種:第一種方法是用電差分的結(jié)構(gòu),早在1995年便實(shí)現(xiàn)了此種結(jié)構(gòu),但此種方法可調(diào)性和可重構(gòu)性很差,而且受電器件帶寬限制;第二種方法是利用復(fù)雜的光電器件實(shí)現(xiàn)全系數(shù)的濾波器,但此種方法成本很高。最近,很多新型低成本的結(jié)構(gòu)被報(bào)導(dǎo)用來實(shí)現(xiàn)具有負(fù)系數(shù)的微波光子濾波器。其中利用偏振態(tài)和外調(diào)制器的方法最有吸引力[12]。另一方面,在ROF系統(tǒng)中,微波光子濾波功能和其他信號(hào)處理功能的結(jié)合將會(huì)大大降低系統(tǒng)成本和加強(qiáng)功能集中化。
2.5 模數(shù)轉(zhuǎn)換器
在某些模擬系統(tǒng)如雷達(dá)和寬帶通信系統(tǒng)中,采用數(shù)字信號(hào)處理方法具有更好性能和快速重構(gòu)性。電域中模數(shù)轉(zhuǎn)換器的弱點(diǎn)隨頻率的升高逐漸明顯,原因在于CMOS數(shù)字轉(zhuǎn)化器受采樣時(shí)鐘抖動(dòng)、采樣保持電路穩(wěn)定時(shí)間、比較器的處理速度等因素的限制。數(shù)字信號(hào)處理中可用的100 GHz抽樣的模數(shù)轉(zhuǎn)換器很難實(shí)現(xiàn)。
微波光子學(xué)提出的方法稱為光學(xué)時(shí)間拉伸,抽樣頻率可達(dá)480 GHz,并有96 GHz的帶寬[13]。光學(xué)時(shí)間拉伸的基本原理是利用光子處理過程減慢電信號(hào)速度以改善電域中的模數(shù)轉(zhuǎn)換器。光處理過程有3步:波長-時(shí)間轉(zhuǎn)換、波長域處理、波長-時(shí)間映射。轉(zhuǎn)換后的慢速電信號(hào)可用常規(guī)模數(shù)轉(zhuǎn)換器(A/D)進(jìn)行變換。
2.6 光域微波放大器
利用常見的摻鉺光纖放大器的增益和光與微波的相互作用可在光域?qū)崿F(xiàn)對(duì)微波信號(hào)進(jìn)行放大,如圖2所示。由外腔激光器輸出的直流光在強(qiáng)度調(diào)制器中被輸入的微波信號(hào)調(diào)制。調(diào)制器的直流偏置點(diǎn)穩(wěn)定在半波電壓附近,輸出的光信號(hào)經(jīng)摻鉺光纖放大器放大后被光帶通濾波器濾除自發(fā)輻射噪聲,最后輸入光接收機(jī)恢復(fù)出放大后的微波信號(hào)。實(shí)驗(yàn)結(jié)果表明,在微波頻率恒定為4 GHz的情況下,隨著輸入微波信號(hào)的增大,微波增益始終穩(wěn)定在17 dB左右,顯示出很好的穩(wěn)定性,而輸出微波信號(hào)的信噪比則會(huì)隨之提高。
2.7 克服微波副載波對(duì)光纖傳輸鏈路的影響
微波在光纖中的傳輸特性是
微波光子學(xué)的重要研究內(nèi)容,早在應(yīng)用混合同軸電纜-光纖系統(tǒng)傳輸模擬的有線電視(CATV)信號(hào)的時(shí)候,鏈路傳輸特性就是關(guān)注的重點(diǎn),相應(yīng)的理論模型已被用來分析ROF鏈路的傳輸特性。在比CATV更高速的ROF鏈路中,光纖色散成為限制傳輸距離的主要因素,PMD和各種非線性效應(yīng)也更加明顯。對(duì)于色度色散,一般認(rèn)為可通過在光域進(jìn)行單邊帶調(diào)制技術(shù)加以解決。其中最直接的方法是用光纖光柵濾波獲取光單邊帶信號(hào),但濾波器本身也會(huì)為系統(tǒng)引入色散。研究表明,外調(diào)制器的非線性嚴(yán)重限制著整個(gè)微波鏈路的動(dòng)態(tài)范圍,一個(gè)較大的發(fā)射功率引起的交叉相位調(diào)制等非線性效應(yīng)會(huì)進(jìn)一步加重對(duì)系統(tǒng)性能的惡化[14]。另一方面,不同數(shù)字調(diào)制格式的信號(hào),對(duì)毫米波光纖傳輸鏈路的指標(biāo)要求大不相同,因此微波光纖傳輸系統(tǒng)中傳輸各種調(diào)制格式如正交移相鍵控(QPSK)、正交幅度調(diào)制(QAM)和用正交頻分復(fù)用(OFDM)技術(shù)時(shí)基帶數(shù)字信號(hào)和中頻信號(hào)時(shí)的鏈路特性,是近期研究的熱點(diǎn)內(nèi)容。
3 系統(tǒng)應(yīng)用
微波光子學(xué)最早的系統(tǒng)應(yīng)用是1970年代末在位于美國洛杉磯北面莫哈韋沙漠中的“深空網(wǎng)絡(luò)”。深空網(wǎng)絡(luò)是一個(gè)分布在數(shù)十公里范圍內(nèi)的由十多個(gè)大型碟形天線組成的集群,其中最大天線的直徑達(dá)70 m。這些天線之間建立了一個(gè)光纖傳輸系統(tǒng)以傳遞1.420405752 GHz超穩(wěn)定微波參考信號(hào)。所有天線單元由這一頻率同步,利用相控陣的概念使它們工作得像一個(gè)巨大的天線一樣,從而能夠與外太空的空間飛船保持通信和跟蹤。其后在1990年代,借助
微波光子學(xué)技術(shù)的混合同軸電纜-光纖CATV系統(tǒng)也取得商業(yè)上的成功。
近年來
微波光子學(xué)的重要應(yīng)用目標(biāo)是利用光纖進(jìn)行無線通信的微波載波信號(hào)的傳輸。即研究光纖內(nèi)射頻傳輸系統(tǒng),即如光載無線(ROF)通信系統(tǒng)。ROF結(jié)合了微波和光纖通信的優(yōu)勢(shì),使得微波在光纖中實(shí)現(xiàn)了低損耗傳輸。ROF可用于實(shí)現(xiàn)中心局與各個(gè)微蜂窩天線之間的信號(hào)傳送和分配。其優(yōu)點(diǎn)在于可將復(fù)雜的微波處理單元放置于中心局,而基站部分僅只有光電轉(zhuǎn)換單元和微波發(fā)射天線兩部分,基站結(jié)構(gòu)簡單可大大降低成本,有利于提高頻率復(fù)用度和蜂窩密度。ROF技術(shù)對(duì)于頻率和調(diào)制格式完全透明,頻率和調(diào)制格式變化時(shí)不需要改變基站,只需對(duì)中心站進(jìn)行升級(jí),非常有利于無線通信網(wǎng)絡(luò)的升級(jí)換代。
英國電信D.Wake小組于1997年建立起早期的60 GHz ROF系統(tǒng),能同時(shí)承載模擬的衛(wèi)星電視信號(hào)和數(shù)字信號(hào),其中60 GHz毫米波信號(hào)是基于主從結(jié)構(gòu)激光器鎖頻的光學(xué)拍頻產(chǎn)生的。隨后韓國世宗大學(xué)于2006年構(gòu)建了中頻傳輸遠(yuǎn)端混頻的60 GHz ROF系統(tǒng),方案采用在光纖中傳輸中頻信號(hào),而在遠(yuǎn)端機(jī)站實(shí)現(xiàn)混頻以避免光纖鏈路色散的影響。最近美國喬治亞理工學(xué)院G.K.Chang教授通過與波分復(fù)用無源光網(wǎng)絡(luò)(WDM-PON)技術(shù)結(jié)合,構(gòu)建了2.5 Gb/s 40 GHz的WDM-ROF系統(tǒng)[15]。在這個(gè)結(jié)構(gòu)中最大的特點(diǎn)是不再有中頻(IF)信號(hào),因而能夠傳輸?shù)幕鶐盘?hào)不再受中頻的影響,在基站設(shè)計(jì)方面,實(shí)現(xiàn)了基站的無光源化,簡化了基站的設(shè)計(jì)。在ROF系統(tǒng)研究領(lǐng)域,日本的研究機(jī)構(gòu)具有強(qiáng)大實(shí)力,主要他們?cè)诟咝阅躄iNbO3調(diào)制器和UTC-PD等新型光電子器件研發(fā)上具有優(yōu)勢(shì)。2007年日本NTT公司報(bào)道了在125 GHz ROF系統(tǒng)中實(shí)現(xiàn)10 Gb/s數(shù)字基帶信號(hào)無誤碼傳輸??梢奟OF系統(tǒng)設(shè)計(jì)將向全雙工、波分復(fù)用、功能集成、低成本和高速率方向發(fā)展。中國的研究者近兩年已取得很大進(jìn)步,完成60 GHz毫米波有線無線混合光傳輸?shù)南到y(tǒng)實(shí)驗(yàn)[16];32 GHz ROF高清電視業(yè)務(wù)傳輸平臺(tái)的建立;光OFDM信號(hào)ROF系統(tǒng)的研究[17]等。
軍事方面的應(yīng)用是
微波光子學(xué)的重大研究領(lǐng)域。它在相控陣?yán)走_(dá)、雷達(dá)天線光纖拉遠(yuǎn)系統(tǒng)等應(yīng)用中有明顯的優(yōu)點(diǎn)[18]。如光控微波波束形成網(wǎng)絡(luò)利用光控實(shí)時(shí)時(shí)延器件以饋線網(wǎng)絡(luò)分布結(jié)構(gòu)對(duì)多信道微波信號(hào)進(jìn)行功率分配、移相、功率合成等處理,實(shí)現(xiàn)對(duì)微波信號(hào)空間分布的控制。光控寬帶相控陣?yán)走_(dá)具有掃描速度快,分辨率高,抗干擾能力強(qiáng),能大幅度減小體積和重量,十分適用于機(jī)載、艦載雷達(dá)系統(tǒng)。改技術(shù)在通信中的應(yīng)用是光控智能天線。智能天線是一種多天線技術(shù),采用天線陣列形成可控的波束,指向并隨時(shí)跟蹤用戶。它具有增加通信容量和速率、減少電磁干擾、減少手機(jī)和基站發(fā)射功率,并具有定位功能的優(yōu)點(diǎn);能減少多徑衰落影響,獲得更多的用戶數(shù)或更高的數(shù)據(jù)率。
微波光子學(xué)的研究成果也廣泛應(yīng)用到智能交通,高速公路交通通信系統(tǒng)[19]和超高速列車通信系統(tǒng)中。基于ROF的交通通信系統(tǒng)能夠支持快速的交接管理和動(dòng)態(tài)帶寬分配,在移動(dòng)通信、車輛通信領(lǐng)域具有強(qiáng)大的競(jìng)爭(zhēng)力。
4 結(jié)束語
過去30年中,
微波光子學(xué)在理論、器件、關(guān)鍵技術(shù)和系統(tǒng)應(yīng)用層面都取得了發(fā)展,某些應(yīng)用已實(shí)現(xiàn)了實(shí)用化[20]。微波技術(shù)與光電子技術(shù)是推動(dòng)信息技術(shù)進(jìn)步的兩大重要學(xué)科。微波技術(shù)發(fā)展至今,在通信、國防等諸多方面獲得了卓越的成就;光電子技術(shù)尤其是光通信在近30年來具有生機(jī)蓬勃的新技術(shù)增長點(diǎn),把通信系統(tǒng)的速度和容量提高到了前所未有的程度。兩者的相互融合,必將對(duì)現(xiàn)代信息技術(shù)產(chǎn)生深遠(yuǎn)的影響。
作為一門新興的交叉學(xué)科,
微波光子學(xué)有著廣泛的應(yīng)用前景。除了在有線電視、ROF通信和雷達(dá)中的應(yīng)用外,
微波光子學(xué)未來可能的應(yīng)用還包括廣播、無線多媒體業(yè)務(wù)、高清視頻流、吉比特?zé)o線局域網(wǎng)、個(gè)域網(wǎng)、光探測(cè)與測(cè)量和射電天文學(xué)等,并可期待在太赫茲技術(shù)、高靈敏度傳感和量子密鑰分配等領(lǐng)域獲得進(jìn)一步研究與發(fā)展。
5 參考文獻(xiàn)
[1] JAGER D. Microwave photonics [M]//SMITH S D, NEALE R F. Optical Information Technology. Edinburgh, Germany: Springer, 1993:328-333.
[2] CAPMANY J, NOVAK D. Microwave photonics combines two worlds [J]. Nature Photonics, 2007, (6):319-330.
[3] BRAUN R P, GROSSKOPF G, ROHDE D, et al. Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking [J]. IEEE Photonics Technology Letters, 1998,10 (5):728-730.
[4] BORDONALI A C, WLTON C, SEEDS A J. High-performance phase locking of wide linewidth semiconductor lasers by combied use of optical injection locking and optical phase-lock loop [J]. Journal of Lightwave Technology, 1999, 17(2):328-342.
[5] CHOW J, TOWN G, EGGLETON B, et al. Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters [J].IEEE Photonics Technology Letters,1996, 8(1):60-62.
[6] SUN J, DAI Y, ZHANG Y, et al. Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation [J] .IEEE Photonics Technology Letters, 2006,18(12):2587-2589.
[7] HEDEKYIST P O. Microwave harmonic frequency generation utilizing the properties of an optical phase modulator [J]. Journal of Lightwave Technology, 2004,22(3): 882-886.
[8] ZHANG J, CHEN H, CHEN M, et al. Photonic generation of a millimeter-wave signal based on sextuple-frequency multiplication [J]. Optics Letters, 2007,32(9):1020-1022.
[9] RENAUD C C, PONNAMPALAM L, POZZI F, et al. Photonically enabled communication systems beyond 1000 GHz [C]//Proceedings of International Topical Meeting on Microwave Photonics, Jointly held with the 2008 Asia-Pacific Microwave Photonics Conference(MWP’08/APMP’08), Sep 30-Oct 3,2008, GoldCoast, Australia.Piscataway, NY,USA:IEEE,2008:55-58.
[10] CHEN H, CHEN M, WANG T, et al. Methods for ultra-wideband pulse generation based on optical cross-polarization modulation [J].Journal of Lightwave Technology, 2008,26(15): 2492-2499.
[11] LAW K Y. Ultra-high frequency linear fiber optic systems [M]. Berlin, Germany: Springer, 2008.
[12] WANG Q, YAO J. Multitap photonic microwave filters with arbitrary positive and negative coefficients using a polarization modulator and an optical polarizer [J].IEEE Photonics Technology Letters, 2008,20(2):78-80.
[13] HAN Y, BOYRAZ O, JALALI B. Ultrawide-band photonic time stretch A/D converter employing phase diversity [J]. IEEE Transactions on Microwave Theory and Techniques, 2005,53(4): 1404-1408.
[14] YU J, HUANG M, QIAN D, et al. Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals [J]. IEEE Photonics Technology Letters, 2008, 20(18): 1545-1547.
[15] JIA Z, YU J, HUANG M F, et al. Testbed demonstration and analysis for delivering dual services simultaneously in a single radio-over-fiber access platform [C]//Proceedings of International Topical Meeting on Micriwave Photonics(MWP’07), Oct 3-5,2007, Victoria, Canada. Piscataway, NJ,USA: IEEE,2007:108-111.
[16] LI M, CHEN H, YIN F, et al. Demonstration of a bidirectional 60 GHz RoF system with remote down-conversion scheme based on OCS and FWM in SOA [C]//Proceedings of the Asia-Pacific Microwave Photonics Conference (APMP’09), Apr 22-24,2009 , Beijing, China.
[17] CHEN L, YU J, LU J, et al. A radio-over-fiber system with photonics generated OFDM signals and wavelength reuse for upstream data connection [C]//Proceedings of the Thirteenth IEEE Asia-Pacific Computer Systems Architecture Conference (ICAIT’08), Jul 28-31,2008,, Shenzhen, China.
[18] 周波.
微波光子學(xué)發(fā)展動(dòng)態(tài) [J]. 激光與紅外, 2006, 36(2): 81-84.
[19] KIM H B, EMMELMANN M, RATHKE B, et al. A radio over fiber network architecture for road vehicle communication systems [C]//Proceedings of 61st Vehicular Technology Conference (VTC-Sprig’2006):Vol 5, May 30-Jun 1,2005, Stockholm, Sweden. Piscataway, NJ,USA: IEEE, 2005: 2920-2924.
[20] COX C H, ACKERMAN E I. Microwave photonics: Past, present and future [C]//Proceedings of International Topical Meeting on Microwave Photonics, Jointly held with the 2008 Asia-Pacific Microwave Photonics Conference(MWP’08/APMP’08), Sep 30-Oct 3,2008, GoldCoast, Australia.Piscataway, NY,USA:IEEE,2008:9-11.